翻訳と辞書
Words near each other
・ Chebyshev filter
・ Chebyshev function
・ Chebyshev integral
・ Chebyshev iteration
・ Chebyshev linkage
・ Chebyshev nodes
・ Chebyshev polynomials
・ Chebyshev pseudospectral method
・ Chebyshev rational functions
・ Chebyshev's bias
・ Chebyshev's inequality
・ Chebyshev's Lambda Mechanism
・ Chebyshev's sum inequality
・ Chebyshev's theorem
・ Chebyshev–Gauss quadrature
Chebyshev–Markov–Stieltjes inequalities
・ Chebzie
・ Cheb–Hranice v Čechách railway
・ Cheb–Oberkotzau railway
・ CHEC
・ CHEC-FM
・ Checa
・ Checa (disambiguation)
・ Checa, Ecuador
・ Checacupe District
・ Checca
・ Checca District
・ Checca sauce
・ Checca, Peru
・ Checco Durante


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Chebyshev–Markov–Stieltjes inequalities : ウィキペディア英語版
Chebyshev–Markov–Stieltjes inequalities
In mathematical analysis, the Chebyshev–Markov–Stieltjes inequalities are inequalities related to the problem of moments that were formulated in the 1880s by Pafnuty Chebyshev and proved independently by Andrey Markov and (somewhat later) by Thomas Jan Stieltjes. Informally, they provide sharp bounds on a measure from above and from below in terms of its first moments.
==Formulation==

Given ''m''0,...,''m''2''m''-1 ∈ R, consider the collection C of measures ''μ'' on R such that
: \int x^k d\mu(x) = m_k
for ''k'' = 0,1,...,2''m'' − 1 (and in particular the integral is defined and finite).
Let ''P''0,''P''1, ...,''P''''m'' be the first ''m'' + 1 orthogonal polynomials with respect to ''μ'' ∈ C, and let ''ξ''1,...''ξ''''m'' be the zeros of ''P''''m''. It is not hard to see that the polynomials ''P''0,''P''1, ...,''P''''m''-1 and the numbers ''ξ''1,...''ξ''''m'' are the same for every ''μ'' ∈ C, and therefore are determined uniquely by ''m''0,...,''m''2''m''-1.
Denote
:\rho_(z) = 1 \Big/ \sum_^ |P_k(z)|^2.
Theorem For ''j'' = 1,2,...,''m'', and any ''μ'' ∈ C,
:\mu(-\infty, \xi_j] \leq \rho_(\xi_1) + \cdots + \rho_(\xi_j) \leq \mu(-\infty,\xi_).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Chebyshev–Markov–Stieltjes inequalities」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.